1. IDENTIFICATION of the SUBSTANCE or PREPARATION:

IDENTIFICATION OF SUBSTANCE/PREPARATION:

TRADE NAME (AS LABELED): Tattoo Paint No. BLK

CHEMICAL NAME/CLASS: Water-Based Pigment

SYNONYMS: Not Applicable

PRODUCT USE: Various Uses

U.N. NUMBER: None Allocated

U.N. DANGEROUS GOODS CLASS/SUBSIDIARY RISK: None Allocated

HAZCHEM CODE (AUSTRALIA): None Allocated

POISONS SCHEDULE NUMBER (AUSTRALIA): None Allocated

COMPANY/UNDERTAKING IDENTIFICATION:

MANUFACTURER'S NAME: DYNAMIC COLOR CO.

ADDRESS: PO Box 21083 Ft. Lauderdale, FL 33335, USA

INFORMATION PHONE: +1-954-462-0261 9 a.m. to 4 p.m. (U.S. East Coast Time Zone)

EMERGENCY PHONE: 1-800-233-8332 9 a.m. to 4 p.m. (U.S. East Coast Time Zone)

(from U.S., Canada, Puerto Rico, U.S. Virgin Islands)

EMAIL: SALES@DYNAMICCOLOR.COM

DATE OF PREPARATION: April 12, 2001

DATE OF REVISION: May 09, 2017

NOTE: ALL United States Occupational Safety and Health Administration Standard (29 CFR 1910.1200), U.S. State equivalent Standards, Canadian WHMIS [Controlled Products Regulations], the European Union CLP EC 1272/2008 and the Global Harmonization Standard, Australian [NOHSC:2012 (2003)], and Japanese Industrial Standard (JIS Z 7250: 2000) required information is included in appropriate sections based on the Global Harmonization Standard. This product has been classified in accordance with the hazard criteria of the countries listed above.

2. HAZARD IDENTIFICATION

Classification: Eye Irritation Cat. 2A Signal Word: Warning Hazard Statement Codes: H319
Precautionary Statement Codes: P264, P280, P305 + P351 + P338, P337 + P313
Hazard Symbol/Pictogram: GHS07

KOREAN ISHA (Notice 2009-68) LABELING AND CLASSIFICATION: Classified in accordance with ISHA Notice 2009-68. Under ISHA, the following differences in classification are applicable.

Classification: Eye Irritation Cat. 2 Signal Word: Warning Hazard Statement Codes: H319
Precautionary Statement Codes: P264, P280, P305 + P351 + P338, P337 + P313
Hazard Symbol/Pictogram: GHS07

NEW ZEALAND HAZARDOUS SUBSTANCES and NEW ORGANISMS ACT (HNSO) CHEMICAL CLASSIFICATION:

Product Group Standard: Not Otherwise Classified, Subsidiary Hazard
Classification: 6.4A: Irritating to the eye

See Section 16 for full text of classification of product and components
EMERGENCY OVERVIEW: Product Description: This product is a black liquid that has a mild odor. Health Hazards: The primary health hazard associated with this product is the potential for mild irritation of contaminated tissue. Eye contact may cause irritation. The inks may stain skin, eyes, other contaminated tissue, and objects. The Carbon Black component is a suspect carcinogen by inhalation of respirable particles. Due to the liquid form of this product, this hazard is not expected to be significant. Flammability Hazards: This product is not flammable. If involved in a fire, the product may decompose to produce carbon and nitrogen oxides. Reactivity Hazards: This product is not reactive. Environmental Hazards: Not tested. This product may have adverse effects when released into the environment. Emergency Recommendations: Emergency responders must wear the personal protective equipment suitable for the situation to which they are responding.

3. COMPOSITION and INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>CAS #</th>
<th>European EINECS #</th>
<th>Japanese MITI/ENC #</th>
<th>Korean ECL #</th>
<th>New Zealand NZIoC #</th>
<th>Chinese IECSC Inventory</th>
<th>Taiwan NESC Inventory</th>
<th>Australian AICS</th>
<th>% w/w</th>
<th>LABEL ELEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylic Polymer</td>
<td>Proprietary</td>
<td>Not Determined</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5%</td>
<td>GHS under U.S. OSHA, Canadian WHMIS & EU CLP 1272/2008, KOREAN ISHA Classification: Not Determined</td>
</tr>
</tbody>
</table>

See Section 16 for full text of classification. See Section 15 for information on other country inventory listing of components, as applicable.

4. FIRST-AID MEASURES

PROTECTION OF FIRST AID RESPONDERS: Rescuers should be taken for medical attention, if necessary. Only trained personnel should administer supplemental oxygen and/or cardio-pulmonary resuscitation, if necessary. DESCRIPTION OF FIRST AID MEASURES: Victim(s) must be taken for medical attention. Take copy of label and MSDS to physician or other health professional with victim(s). Remove victim(s) to fresh air, as quickly as possible. Skin Exposure: If this product contaminates the skin, begin decontamination with running water. Minimum flushing is for 20 minutes. The contaminated individual must seek medical attention if any adverse effects occur after flushing. Eye Exposure: If this product enters the eyes, open contaminated individual’s eyes while under gently running water. Use sufficient force to open eyelids. Have contaminated individual “roll” eyes. Minimum flushing is for 20 minutes. Contaminated individual must seek medical attention if adverse effect continues after flushing. Inhalation: If aerosols are inhaled, remove victim to fresh air. The contaminated individual must seek medical attention if any adverse effects occur. Ingestion: If swallowed, CALL PHYSICIAN OR POISON CONTROL CENTER FOR MOST CURRENT INFORMATION. If professional advice is not available, do not induce vomiting. Never induce vomiting or give diluents (milk or water) to someone who is unconscious, having convulsions, or unable to swallow. If victim is convulsing, maintain an open airway and obtain immediate medical attention. IMPORTANT SYMPTOMS AND EFFECTS: See Sections 2 (Hazard Information) and 11 (Toxicological Information) for information. MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE: Skin or respiratory conditions may be aggravated by exposure to this product. INDICATION OF IMMEDIATE MEDICAL ATTENTION AND SPECIAL TREATMENT IF NEEDED: Treat symptoms and eliminate exposure.
5. FIRE-FIGHTING MEASURES

FLASH POINT: Not flammable.
AUTOIGNITION TEMPERATURE: Not applicable.
FLAMMABLE LIMITS (in air by volume, %): Not applicable.
FIRE EXTINGUISHING MEDIA: Unless incompatibilities exist for surrounding materials, carbon dioxide, water spray, ‘ABC’ type chemical extinguishers, foam, dry chemical and halon extinguishers can be used to fight fires involving this product.
UNSUITABLE FIRE EXTINGUISHING MEDIA: None known.
SPECIAL HAZARDS ARISING FROM THE SUBSTANCE: When involved in a fire, this material may decompose and produce irritating vapors and toxic gases (e.g., carbon and nitrogen oxides).
 - Explosion Sensitivity to Static Discharge: Not sensitive.
SPECIAL PROTECTIVE ACTIONS FOR FIRE-FIGHTERS: Incipient fire responders should wear eye protection. Structural firefighters must wear Self-Contained Breathing Apparatus and full protective equipment. Due to the presence of pigment, the runoff water from this product can discolor contaminated objects. If possible, prevent runoff water from entering storm drains, bodies of water, or other environmentally sensitive areas. If necessary, rinse fire-response equipment with soapy water before returning it to service.

6. ACCIDENTAL RELEASE MEASURES

PERSONAL PRECAUTIONS AND EMERGENCY PROCEDURES: Uncontrolled releases should be responded to by trained personnel using pre-planned procedures. Proper protective equipment should be used. Call CHEMTREC (1-800-424-9300) for emergency assistance. Or if in Canada, call CANUTEC (613-996-6666). The atmosphere must at least 19.5 percent Oxygen before non-emergency personnel can be allowed in the area without Self-Contained Breathing Apparatus and fire protection.

PERSONAL PROTECTIVE EQUIPMENT: Proper protective equipment should be used.
 - Small Spills: Wear rubber gloves, splash goggles, and appropriate body protection.
 - Large Spills: Minimum Personal Protective Equipment should be rubber gloves, rubber boots, face shield, and Tyvek suit. Minimum level of personal protective equipment for releases in which the level of oxygen is less than 19.5% or is unknown must be Level B: triple-gloves (rubber gloves and nitrile gloves over latex gloves), chemical resistant suit and boots, hard hat, and Self-Contained Breathing Apparatus.

METHODS FOR CLEAN-UP AND CONTAINMENT:
 - Small Spills: Carefully absorb spill using poly pads or other non-reactive absorbent. Place spilled material in appropriate container for disposal, sealing tightly. Remove all residue before decontamination of spill area.
 - Large Spills: Access to the spill area should be restricted. For large spills, dike or otherwise contain spill and absorb spill with poly pads or other non-reactive absorbent material. Monitor area for combustible vapor levels.
 - All Spills: Place all spill residue in a double plastic bag or other containment and seal. Decontaminate the area thoroughly. Do not mix with wastes from other materials. Dispose of in accordance with applicable Federal, State, and local procedures (see Section 13, Disposal Considerations). For spills on water, contain, minimize dispersion and collect. Dispose of recovered material and report spill per regulatory requirements.

ENVIRONMENTAL PRECAUTIONS: Avoid release to the environment. Run-off water may be contaminated by other materials and should be contained to prevent possible environmental damage.

REFERENCE TO OTHER SECTIONS: See information in Section 8 (Exposure Controls – Personal Protection) and Section 13 (Disposal Considerations) for additional information.

7. HANDLING and STORAGE

PRECAUTIONS FOR SAFE HANDLING: As with all chemicals, avoid getting this product ON YOU or IN YOU. Wash thoroughly after handling this product. Do not eat, drink, smoke, or apply cosmetics while handling this product. Avoid breathing aerosols from the product. Keep away from incompatible materials (see Section 10, Stability and Reactivity). Containers of this product must be properly labeled. Use in a well-ventilated location. Remove contaminated clothing.

CONDITIONS FOR SAFE STORAGE: Keep container tightly closed when not in use. Store containers in a cool, dry location, away from direct sunlight, sources of intense heat, or where freezing is possible. Material should be stored in secondary containers or in a diked area, as appropriate. Inspect all incoming containers before storage, to ensure containers are properly labeled and not damaged. Have appropriate extinguishing equipment in the storage area (such as sprinkler systems or portable fire extinguishers). Empty containers may contain residual product; therefore, empty containers should be handled with care.

SPECIFIC USE(S): This product is for use as an ink. Follow all industry standards for use of this product.

PROTECTIVE PRACTICES DURING MAINTENANCE OF CONTAMINATED EQUIPMENT: Follow practices indicated in Section 6 (Accidental Release Measures). Make certain that application equipment is locked and tagged-out safely. Always use this product in areas where adequate ventilation is provided. Decontaminate equipment thoroughly, before maintenance begins. Collect all rinsates and dispose of according to applicable Federal, State, or local procedures, or applicable standards.
8. EXPOSURE CONTROLS - PERSONAL PROTECTION

EXPOSURE LIMITS/CONTROL PARAMETERS:

Ventilation and Engineering Controls: Use with adequate ventilation to ensure exposure levels are maintained below the limits provided in this section. Use local exhaust ventilation. Normal office ventilation conforming to the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standards is adequate under normal circumstances of use. Persons using this material should consult a qualified Ventilation Engineer and/or Industrial Hygienist if concerns about exposure arise. If necessary, refer to Australian National Code of Practice for the Control of Workplace Hazardous Substances [NOHSC: 2007 (1994)] for further information.

Workplace Exposure Limits/Control Parameters:

<table>
<thead>
<tr>
<th>CHEMICAL NAME</th>
<th>CAS #</th>
<th>ACGIH-TLVs</th>
<th>OSHA-PELs</th>
<th>EXPOSURE LIMITS IN AIR</th>
<th>NIOSH-PELs</th>
<th>NIOSH</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TWA mg/m³</td>
<td>STEL mg/m³</td>
<td>TWA mg/m³</td>
<td>STEL mg/m³</td>
<td>TWA mg/m³</td>
<td>STEL mg/m³</td>
</tr>
<tr>
<td>Carbon Black</td>
<td>1333-86-4</td>
<td>3 (inhal. frac.)</td>
<td>NE</td>
<td>3.5</td>
<td>NE</td>
<td>3.5 (0.1 in presence of PAHs, as PAHs; 1-hr TWA)</td>
<td>NE</td>
</tr>
<tr>
<td>Isopropyl Alcohol</td>
<td>67-63-0</td>
<td>492</td>
<td>984</td>
<td>980</td>
<td>500 ppm (vacated 1989 PEL)</td>
<td>980</td>
<td>1225</td>
</tr>
<tr>
<td>Acrylic Polymer</td>
<td>Proprietary</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
</tr>
</tbody>
</table>

NE = Not Established; PAHs = Polycyclic Aromatic Hydrocarbons; See Section 16 for Definitions of Other Terms Used

International Occupational Exposure Limits: The following international limits are in place for some components of this product. Limits may have changed since time of preparation of this SDS and should be checked with competent authorities of individual countries.

<table>
<thead>
<tr>
<th>CHEMICAL NAME</th>
<th>CAS #</th>
<th>ACGIH-TLVs</th>
<th>OSHA-PELs</th>
<th>EXPOSURE LIMITS IN AIR</th>
<th>NIOSH-PELs</th>
<th>NIOSH</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TWA mg/m³</td>
<td>STEL mg/m³</td>
<td>TWA mg/m³</td>
<td>STEL mg/m³</td>
<td>TWA mg/m³</td>
<td>STEL mg/m³</td>
</tr>
<tr>
<td>ISOPROPYL ALCOHOL (continued):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium: TWA = 500 ppm (980 mg/m³), MAR 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark: TWA = 200 ppm (490 mg/m³), MAY 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France: VLE = 400 ppm (980 mg/m³), FEB 2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany: MAK = 500 ppm/m³ (200 mL/m³), 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary: TWA = 500 mg/m³, STEL = 2000 mg/m³, Skin, SEP 2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland: TWA = 200 ppm (490 mg/m³), Nov, NOV 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan: OEL-C = 400 ppm (980 mg/m³), MAY 2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korea: TWA = 500 ppm (980 mg/m³), STEL = 500 ppm (1225 mg/m³), 2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico: TWA = 400 ppm (980 mg/m³), STEL = 500 ppm (1225 mg/m³), 2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Netherlands: MAC-TGG = 650 mg/m³, 2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Zealand: TWA = 500 ppm (1230 mg/m³), JAN 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway: TWA = 3 mg/m³, JAN 1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru: TWA = 3 mg/m³, JUL 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Philippines: TWA = 3 mg/m³, JAN 1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russia: STEL = 4 mg/m³, JUN 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden: TWA = 3 mg/m³, JUN 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom: TWA = 3 mg/m³, JAN 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Argentina, Bulgaria, Colombia, Jordan, Singapore, Vietnam check ACGIH TLV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISOPROPYL ALCOHOL:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia: TWA = 400 ppm (983 mg/m³), STEL = 500 ppm (1230 mg/m³), JUL 2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria: MAK-TMW 200 ppm (500 mg/m³); KZW = 800 ppm (2000 mg/m³), 2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium: TWA = 400 ppm (997 mg/m³), MAR 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Biological Exposure Indices (ACGIH): Currently, there are ACGIH Biological Exposure Indices (BEIs) determined for the components of this product, as follows:

<table>
<thead>
<tr>
<th>CHEMICAL: DETERMINANT</th>
<th>SAMPLING TIME</th>
<th>BEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isopropyl Alcohol • Acetone in urine</td>
<td>End of Shift End of Workweek</td>
<td>40 mg/L</td>
</tr>
</tbody>
</table>

Workplace Exposure Standards (New Zealand): None established. Refer to the Hazardous Substances (Classes 6, 8, and 9 Controls) Regulations 2001 (Regulations 29-30).

Exposure Standards Outside the Workplace (New Zealand): Currently, there are no other exposure limits, such as TELS and EELS (See Section 12 Ecological Information for EEL information) established for components of this product.

8. EXPOSURE CONTROLS - PERSONAL PROTECTION (Continued)

PERSONAL PROTECTIVE EQUIPMENT (continued):

Respiratory Protection: Respiratory protection is not generally needed when using this product. Maintain airborne contaminant concentrations below limits listed in this section, if applicable. In instances where inhalable mists or sprays of product may be generated, and respiratory protection is necessary, use only respiratory protection authorized in appropriate regulations. Oxygen levels below 19.5% are considered IDLH by U.S. OSHA. In such atmospheres, use of a full-facepiece pressure/demand SCBA or a full facepiece, SAR with auxiliary self-contained air supply is required under OSHA’s Respiratory Protection Standard (1910.134-1998).

Eye Protection: Depending on the use of this product, splash goggles or safety glasses may be worn. Use goggles or safety glasses for spill response, as stated in Section 6 (Accidental Release Measures) of this SDS. If necessary, refer to appropriate regulations when selecting eye protection.

Hand Protection: Wear butyl rubber, neoprene, or nitrile rubber or latex gloves for routine use. If necessary, refer to appropriate regulations for further information.

Body Protection: Use body protection appropriate for task, such as a lab coat. If necessary, use body protection appropriate for task (e.g., Tyvek suit, rubber apron). If a hazard of injury to the feet exists due to falling objects, rolling objects, where objects may pierce the soles of the feet or where employee’s feet may be exposed to electrical hazards, use foot protection, as described in appropriate regulations.

9. PHYSICAL and CHEMICAL PROPERTIES

FORM: Liquid.
MOLECULAR FORMULA: Mixture.
COLOR: Black.
MOLECULAR WEIGHT: Mixture.
ODOR: Mild.
MOLECULAR FORMULA: Mixture.
odor threshold: Not Established.
VAPOR DENSITY (air = 1): Not established.
SPECIFIC GRAVITY (water = 1): Not established.
SOLUBILITY IN WATER: Soluble.
VAPOR PRESSURE: Not established.
OXIDIZING PROPERTIES: Not applicable.
COEFFICIENT OF OIL/WATER DISTRIBUTION (PARTITION COEFFICIENT): Not established.

HOW TO DETECT THIS SUBSTANCE (identification properties):
The odor and color of this product may be distinguishing characteristics to identify it event of a spill.

10. STABILITY and REACTIVITY

CHEMICAL STABILITY: Stable under conditions of normal temperature and pressure.
DECOMPOSITION PRODUCTS: Combustion: If exposed to extremely high temperatures, this product can decompose to generate carbon and nitrogen oxides. Hydrolysis: None known.
MATERIALS WITH WHICH SUBSTANCE IS INCOMPATIBLE: Strong oxidizers, water-reactive materials.
POSSIBILITY OF HAZARDOUS REACTION OR POLYMERIZATION: Will not occur.
CONDITIONS TO AVOID: Contact with incompatible materials.

11. TOXICOLOGICAL INFORMATION

SYMPTOMS OF EXPOSURE BY ROUTE OF EXPOSURE: The most significant routes of occupational exposure are inhalation and contact with skin and eyes. The symptoms of exposure to this material, via route of entry, are as described below.

Inhalation: This product does not normally present a significant inhalation hazard under anticipated circumstances of use. Inhalation of vapors, mists, or sprays of this material, may mildly irritate the nose, throat, and other tissues of the respiratory system.

Contact with Skin or Eyes: Due to the pigment, skin contact may discolor contaminated areas. Skin contact may cause mild irritation in sensitive individuals. Repeated or prolonged skin exposure may cause dermatitis (dry, red skin). Eye contact with this material can moderately irritate the eyes, causing discomfort, tearing, and redness. Because the eye tissue may be stained, vision may be temporarily blurred.

Skin Absorption: No component is known to be absorbed via intact skin.

Ingestion: Though not anticipated to be a significant route of occupational exposure, ingestion of large quantities of this material may cause nausea, vomiting, diarrhea, and discoloration of the mouth, teeth, and tissues of the throat.

Injection: Accidental injection of this liquid (as may occur by a puncture with a contaminated object) will cause local pain, irritation, and redness.

HEALTH EFFECTS OR RISKS FROM EXPOSURE: In the event of exposure, the following symptoms may be observed:

Acute: The ink may stain hair, skin, and other contaminated tissue. Eye contact will cause moderate irritation. Ingestion of large amounts may cause nausea, vomiting, diarrhea.

Chronic: Repeated or prolonged skin exposure may cause dermatitis (dry, red skin).

TARGET ORGANS: Acute: Skin, central nervous system, eyes. Chronic: Skin.

HAZARDOUS MATERIAL IDENTIFICATION SYSTEM

HEALTH HAZARD (BLUE) 1
FLAMMABILITY HAZARD (RED) 0
PHYSICAL HAZARD (YELLOW) 0

PROTECTIVE EQUIPMENT

HAZARD SCALE: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe * = Chronic hazard
CARBON BLACK:
LD₅₀ (Oral-Rat) > 1500 mg/kg; Behavioral: somnolence (general depressed activity)
LD₅₀ (Intravenous-Rat) > 3 g/kg; Behavioral: depression
TCLo (Inhalation-Rat) 7 mg/m³; Lungs, Thorax, or Respiration: other changes;
Biochemical: Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TCLo (Inhalation-Rat) 1.66 mg/m³/7 hours: Lungs, Thorax, or Respiration: spumoni;
Blood: changes in leukocyte (WBC) count; Biochemical: Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TCLo (Inhalation-Rat) 50 mg/m³: Sense Organs and Special Senses (Olfaction): effect, not otherwise specified; Biochemical: Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TCLo (Inhalation-Rat) 229 mg/m³/6 hours: Lungs, Thorax, or Respiration: other changes;
Biochemical: Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TCLo (Inhalation-Rat) 50 mg/m³/6 hours/90 days-intermittent: Lungs, Thorax, or Respiration: other changes
TCLo (Inhalation-Rat) 1 mg/m³/13 weeks-intermittent: Lungs, Thorax, or Respiration: other changes;
Biochemical: Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TCLo (Inhalation-Rat) 1 mg/m³/13 weeks-intermittent: Lungs, Thorax, or Respiration: other changes;
changes in lung weight; Biochemical: Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TCLo (Inhalation-Rat) 50 mg/m³/13 weeks-intermittent: Lungs, Thorax, or Respiration: other changes;
Biochemical: Metabolism (Intermediate): other, Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TCLo (Inhalation-Rat) 50 mg/m³/6 hours/13 weeks-intermittent: Sense Organs and Special Senses (Olfaction): effect, not otherwise specified; Biochemical: Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TCLo (Inhalation-Rat) 11,600 µg/m³/16 hours/2 years-intermittent: Tumorigenic: carcinogenic by RTECS criteria; Lungs, Thorax, or Respiration: tumors
TCLo (Inhalation-Mouse) 50 mg/m³/6 hours: Sense Organs and Special Senses (Olfaction): effect, not otherwise specified
TCLo (Inhalation-Hamster) 1 mg/m³/13 weeks-intermittent: Lungs, Thorax, or Respiration: other changes;
Biochemical: Metabolism (Intermediate): other, Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TCLo (Inhalation-Mouse) 1 mg/m³/13 weeks-intermittent: Lungs, Thorax, or Respiration: other changes;
changes in lung weight; Biochemical: Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TCLo (Inhalation-Mouse) 7 mg/m³/16 hours/13 weeks-intermittent: Sense Organs and Special Senses (Olfaction): effect, not otherwise specified; Biochemical: Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TCLo (Inhalation-Hamster) 7 mg/m³/13 weeks-intermittent: Lungs, Thorax, or Respiration: other changes;
Biochemical: Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TCLo (Inhalation-Hamster) 50 mg/m³/6 hours/13 weeks-intermittent: Sense Organs and Special Senses (Olfaction): effect, not otherwise specified
TDLo (Inhalation-Mouse) 20,000 µg/m³/4 weeks-intermittent: Brain and Coverings: other degenerative changes; Biochemical: Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TDLo (Intravenous-Rat) 10 mg/kg/2 minutes: Liver: changes in liver weight; Blood: changes in spleen
TDLo (Intravenous-Rat) 10 mg/kg/2 minutes: Biochemical: Enzyme inhibition, induction, or other changes; Biochemical: Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TDLo (Intravenous-Rat) 15 mg/kg: Lungs, Thorax, or Respiration: other changes;
Biochemical: Enzyme inhibition, induction, or change in blood or tissue levels: cytochrome oxides (including oxidative phosphorylation)

CARBON BLACK (continued):
TDLo (Intratracheal-Rat) 10 mg/kg: Lungs, Thorax, or Respiration: spumoni; Biochemical: Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TDLo (Intratracheal-Mouse) 20 mg/kg/4 days-intermittent: Lungs, Thorax, or Respiration: spumoni; Immunological Including Allergic: increase in cellular immune response;
Biochemical: Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TDLo (Intratracheal-Mouse) 4000 µg/kg/4 weeks-intermittent: Lungs, Thorax, or Respiration: spumoni; Immunological Including Allergic: increase in cellular immune response;
Biochemical: Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TDLo (Intratracheal-Mouse) 1000 µg/kg: Lungs, Thorax, or Respiration: other changes;
Biochemical: Metabolism (Intermediate): effect on inflammation or mediation of inflammation
TDLo (Parenteral-Mouse) 36 µg/µL/3 days-intermittent: Immunological Including Allergic: increase in humoral immune response

Mutation in Microorganisms (Bacteria-Salmonella typhimurium) 1 mg/plate
DNA Adduct (Inhalation-Mouse) 6200 µg/m³/16 hours/12 weeks-intermittent
DNA Damage (Human Lymphocyte) 15 µL/24 hours
DNA Damage (Inhalation-Rat) 50 µL/13 weeks-intermittent
DNA Damage (Inhalation-Rat) 50 µL/13 weeks

ISOPROPYL ALCOHOL:
LDLo (oral, man) = 5272 mg/kg; Behavioral: coma; Vascular: BP lowering not characterized in autonomic section; Lungs, Thorax, or Respiration: chronic pulmonary edema
LDLo (oral, human) = 3570 mg/kg; Behavioral: coma; Lungs, Thorax, or Respiration: respiratory depression; Gastrointestinal: nausea or vomiting
LDLo (oral, man) = 14.432 mg/kg; Behavioral: coma; Vascular: BP lowering not characterized in autonomic section
LDLo (oral, human) = 223 mg/kg; Behavioral: hallucinations, distorted perceptions
Cardiac: pulse rate; Vascular: BP lowering not characterized in autonomic section
TDLo (unreported, man) = 13 gm/kg; increase in somnolence (general depressed activity), irritability; Gastrointestinal: nausea or vomiting
LDLo (unreported, man) = 2770 mg/kg
Skin Irritancy (rabbit) = 50 mg; mild
Eye Irritancy (rabbit) = 100 mg; severe
Eye Irritancy (rabbit) = 16 mg
Eye Irritancy (rabbit) = 10 mg; moderate
LDLo (oral, rat) = 5045 mg/kg
LDLo (oral, mouse) = 3600 mg/kg
LDLo (oral, rabbit) = 6410 mg/kg
LDLo (skin, rabbit) = 12,800 mg/kg
LDLo (intravenous, rat) = 1099 mg/kg
LDLo (intravenous, mouse) = 1593 mg/kg
LDLo (intraperitoneal, rat) = 2735 mg/kg
LDLo (intraperitoneal, mouse) = 4477 mg/kg
LDLo (intraperitoneal, guinea pig) = 2560 mg/kg
LDLo (intraperitoneal, hamster) = 3444 mg/kg
LDLo (oral, dog) = 1537 mg/kg; Gastrointestinal: nausea or vomiting
LDLo (oral, cat) = 6 mL/kg
LCLo (inhalation, rat) = 16,000 ppm/4 hours
LCLo (inhalation, mouse) = 12,800 ppm/3 hours
LCLo (intravenous, cat) = 1963 mg/kg
LDLo (parenteral, frog) = 20 g/kg; Peripheral Nerve and Sensation: spastic paralysis with or without sensory change; Behavioral: somnolence (general depressed activity)
LDLo (subcutaneous, guinea pig) = 6000 mg/kg
LDLo (intravenous, dog) = 5120 mg/kg
LDLo (oral, rat) = 6480 mg/kg/male 26 weeks pre; Reproductive effects
TDLo (inhalation, rat) = 10,000 ppm/7 hours/female 1–19 days post; Teratogenic effects
Cyto genetic Analysis (Saccharomyces cerevisiae) = 200 mmol/tube
Cyto genetic Analysis (inhalation, rat) = 1030 µg/m³/716 weeks/intermittent

CARCINOGENIC POTENTIAL OF COMPONENTS:
Components of this product are listed by agencies tracking the carcinogenic potential of chemical compounds, as follows;
CARBON BLACK: ACGIH TLV-A3 (Confirmed Animal Carcinogen), IARC-2B (Possibly Carcinogenic to Humans); MAK-3B (Substances for Which In vitro tests or Animal Studies Have Yielded Evidenced Of Carcinogenic Effects That is Not Sufficient for Classification of the Substance In One of the Other Categories. Further studies are required before a final classification can be made. A MAK or BAT value can be established, provided no genotoxic effects have been detected.); NIOSH-Ca (Potential Occupational Carcinogen with No Further Categorization * In presence of PAHs)
ISOPROPYL ALCOHOL: ACGIH TLV-A4 (Not Classifiable as a Human Carcinogen); IARC-3 (Not Classifiable as to Carcinogenicity to Humans)
The remaining components of this product are not found on the following lists: U.S. EPA, U.S. NTP, U.S. OSHA, U.S. NIOSH, GERMAN MAK, IARC, and ACGIH, and therefore are neither considered to be nor suspected to be cancer-causing agents by these agencies.
IRRITATION OF PRODUCT: Acute exposure to this product via eye contact may irritate contaminated eyes. Acute exposure to this product via skin contact and inhalation may mildly irritate contaminated tissue, especially if exposure is prolonged.
SENSITIZATION TO THE PRODUCT: The components of this product are not known to be human skin or respiratory sensitizers.
REPRODUCTIVE TOXICITY INFORMATION: Listed below is information concerning the effects of components of this product on the human reproductive system.
Mutagenicity: No data are available on possible mutagenic effects from this product or its components.
11. TOXICOLOGICAL INFORMATION (Continued)

REPRODUCIVE TOXICITY INFORMATION (continued):

Embryotoxicity: The components of this product are not reported to produce embryotoxic effects in humans. The Isopropyl Alcohol component has produced fetotoxicity (reduced fetal weight) in rats exposed by inhalation, in the absence of maternal toxicity. Reduced survival in the early postnatal period has been observed in the offspring of rats exposed to high oral doses, in the presence of minimal maternal toxicity. Rats were exposed by inhalation to 0, 3500, 7000 or 10000 ppm during days 1-19 of pregnancy. Maternal toxicity was observed at the 2 high doses, but not at 3500 ppm. Fetal weights were significantly reduced in a concentration related manner at all treatment levels. At 7000 and 10000 ppm, teratogenicity and/or embryotoxicity were observed.

Teratogenicity: No data are available on possible teratogenic effects from this product and its components.

Reproductive Toxicity: The components of this product are not reported to cause reproductive effects in humans. In a two-generation study of Isopropyl Alcohol, rats were orally dosed with 0, 100, 500 or 1000 mg/kg/day for 10 weeks prior to mating. Females were dosed during mating, gestation and lactation and males were dosed during mating through delivery of the last litter sired. In the first generation, a significant reduction was observed in the live birth index and the survival index on days 1 and 4 for the offspring of animals exposed to 1000 mg/kg/day, as well as the survival rate of offspring. Only minimal maternal toxicity (increased liver weight) was observed at 500 mg/kg/day. At 1000 mg/kg/day, 2/30 females in the first generation (P1) and 2/26 females died in the second generation.

12. ECOLOGICAL INFORMATION

ALL WORK PRACTICES MUST BE AIMED AT ELIMINATING ENVIRONMENTAL CONTAMINATION.

MOBILITY: This product has not been tested for mobility in soil. It is expected to be somewhat mobile in soil. The following information is available for the Isopropyl Alcohol component.

ISOPROPYL ALCOHOL: The Koc of Isopropyl Alcohol is estimated as 25, using a measured log Kow of 0.05 and a regression-derived equation. According to a classification scheme, this estimated Koc value suggests that Isopropyl Alcohol is expected to have very high mobility in soil.

PERSISTENCE AND BIODEGRADABILITY: This product has e not been tested for persistence or biodegradability. It is expected that some biodegradation will occur to this product; however, no specific information is known. The following information is available for the Isopropyl Alcohol component.

ISOPROPYL ALCOHOL: Based on a classification scheme, an estimated Koc value of 25, determined from a log Kow of 0.05 and a regression-derived equation, indicates that Isopropyl Alcohol is expected to have very high mobility in soil. Volatilization of Isopropyl Alcohol from moist soil surfaces is expected to be an important fate process given a Henry's Law constant of 8.10X10^-6 atm-cu/mole. The potential for volatilization of Isopropyl Alcohol from dry soil surfaces may exist based upon a vapor pressure of 45.4 mmHg. Isopropyl Alcohol is readily degraded in aerobic systems; the range of half-lives for aerobic degradation using a sewage sludge inoculum are < 1 day to 48 days. Isopropyl Alcohol has also been shown to be readily degraded under anaerobic conditions. Volatilization from water surfaces is expected based upon a Henry's Law constant of 8.10X10^-6 atm-cu/mole. Using this Henry's Law constant and an estimation method, volatilization half-lives for a model river and model lake are 57 hours and 29 days, respectively. Isopropyl Alcohol is readily degraded in aerobic systems; the range of half-lives for aerobic degradation using a sewage sludge inoculum are < 1 day to 48 days. Isopropyl Alcohol has also been shown to be readily degraded under anaerobic conditions. According to a model of gas/particle partitioning of semi-volatile organic compounds in the atmosphere, Isopropyl Alcohol, which has a vapor pressure of 45.4 mm HG at 25°C, is expected to exist solely as a vapor in the ambient atmosphere. Vapor-phase Isopropyl Alcohol is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 3.2 days, calculated from its rate constant of 5.07X10^-12 cm/molecule-sec at 25°C.

ECOTOXICITY: This product has not been tested for the effects of this product on terrestrial or aquatic organisms if released to the environment. Plants may be discolored and damaged (depending on the severity of the contamination). The following aquatic toxicity data are available for the Isopropyl Alcohol component (not all available data are given in the SDS.

Contact Dynamic Color for information on other available data).

ISOPROPYL ALCOHOL:
EC50 (Daphnia magna) 3.010 mg/L
LC50 (Artemia salina) 24 hours = 16,700 mg/L
LC20 (Streptococcus protobacillus) 24 hours = 11,600 mg/L
LC50 (Daphnia magna) 24 hours = 9,500 mg/L

RESULTS OF PBT AND vPvB ASSESSMENT: No data available. PBT and vPvB assessments are part of the chemical safety report required for some substances in European Union Regulation (EC) 1907/2006, Article 14.

ENVIRONMENTAL EXPOSURE CONTROLS: Controls should be engineered to prevent release to the environment, including procedures to prevent spills, atmospheric release and release to waterways.

13. DISPOSAL CONSIDERATIONS

DISPOSAL METHODS: It is the responsibility of the generator to determine at the time of disposal whether the product meets the criteria of a hazardous waste per regulations of the area in which the waste is generated and/or disposed of. Waste disposal must be in accordance with appropriate Federal, State, and local regulations. This product, if unaltered by use, may be disposed of by treatment at a permitted facility or as advised by your local hazardous waste regulatory authority. Shipment of wastes must be done with appropriately permitted and registered transporters.

DISPOSAL CONTAINERS: Waste materials must be placed in and shipped in appropriate 5-gallon or 55-gallon poly or metal waste pails or drums. Permeable cardboard containers are not appropriate and should not be used. Ensure that any required marking or labeling of the containers be done to all applicable regulations.

PRECAUTIONS TO BE FOLLOWED DURING WASTE HANDLING: Wear proper protective equipment when handling waste materials.

U.S. EPA WASTE NUMBER: Not applicable to wastes consisting only of this product.

EUROPEAN WASTE CODES: Wastes from MFSU and Removal of Printing Inks: 08 03 99: Wastes Not Otherwise Specified
14. TRANSPORTATION INFORMATION

U.S. DEPARTMENT OF TRANSPORTATION: This product is not classified as dangerous goods, per U.S. DOT regulations, under 49 CFR 172.101.

TRANSPORT CANADA, TRANSPORTATION OF DANGEROUS GOODS REGULATIONS: This product is NOT classified as dangerous goods, per regulations of Transport Canada.

INTERNATIONAL AIR TRANSPORT ASSOCIATION SHIPPING INFORMATION (IATA): This product is NOT classified as dangerous goods.

INTERNATIONAL MARITIME ORGANIZATION SHIPPING INFORMATION (IMO): This product is NOT classified as dangerous goods.

EUROPEAN AGREEMENT CONCERNING THE INTERNATIONAL CARRIAGE OF DANGEROUS GOODS BY ROAD (ADR): This product is NOT classified by the United Nations Economic Commission for Europe to be dangerous goods.

AUSTRALIAN FEDERAL OFFICE OF ROAD SAFETY CODE FOR THE TRANSPORTATION OF DANGEROUS GOODS: This product is not classified as dangerous goods, per regulations of the Australian Federal Office of Road Safety.

TRANSPORT IN BULK ACCORDING TO ANNEX II OF MARPOL 73/78 AND THE IBC CODE: Not applicable.

ENVIRONMENTAL HAZARDS: This product is neither environmentally hazardous according to the criteria of the UN Model Regulations (as reflected in the IMDG Code, ADR, RID, and ADN); no component meets the criteria of environmentally hazardous.

15. REGULATORY INFORMATION

UNITED STATES REGULATIONS:

U.S. SARA Reporting Requirements: The components of this product are subject to the reporting requirements of Sections 302, 304, and 313 of Title III of the Superfund Amendments and Reauthorization Act and are listed as follows:

<table>
<thead>
<tr>
<th>CHEMICAL NAME</th>
<th>SARA 302 (40 CFR 355, Appendix A)</th>
<th>SARA 304 (40 CFR Table 302.4)</th>
<th>SARA 313 (40 CFR 372.65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isopropyl Alcohol (mfg-strong acid process)</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

U.S. SARA Threshold Planning Quantity (TPQ): There are no specific Threshold Planning Quantities for this material. The default Federal SDS submission and inventory requirement filing threshold of 10,000 lb (4,540 kg) may apply, per 40 CFR 370.20.

U.S. CERCLA Reportable Quantity (RO): Not applicable.

U.S. TSCA Inventory Status: The components of this product are listed on the TSCA Inventory.

U.S. Hazardous Air Pollutant (HAPs): The components of this product are not listed by the EPA under section 112(b) of the Clean Air Act as a "HAP".

Other U.S. Federal Regulations: Not applicable.

California Safe Drinking Water And Toxic Enforcement Act (Proposition 65): The Carbon Black component, (airborne, unbound particles of respirable size) is on the California Proposition 65 Lists. If airborne particles of this product are generated, the following warning must be on packaging and labeling of this product: WARNING! This product contains a component known to the State of California to cause cancer. As a liquid, this warning is not expected to be required.

CANADIAN REGULATIONS:

Canadian DSL/NDSL Inventory Status: Components listed by CAS# in Section 3 (Composition and Information on Ingredients) are listed on the DSL Inventory.

Canadian Environmental Protection Act (CEPA) Priority Substances Lists: The Isopropyl Alcohol component is listed as a Substance With Greatest Potential For Human Exposure Substance on Environment Canada/Health Canada Pilot Project List (CEPA 1999, Section 73). Meets categorization criteria: “may present, to individuals in Canada, the greatest potential for exposure; or *are persistent or bioaccumulative in accordance with the regulations, and inherently toxic to human beings or to non-human organisms, as determined by laboratory or other studies.

Canadian WHMIS HPR 2015 Classification and Symbols: See the following section for classification and symbols under WHMIS.

EUROPEAN UNION REGULATIONS:

Safety, Health, and Environmental Regulations/Legislation Specific for the Product: Currently, there is no specific legislation pertaining to this product.

CHEMICAL SAFETY ASSESSMENT: No data available. The chemical safety assessment is required for some substances according to European Union Regulation (EC) 1907/2006, Article 14.

AUSTRALIAN REGULATIONS:

Australian Inventory Of Chemical Substances (AICS) Status: Components listed by CAS# in Section 3 (Composition and Information on Ingredients) are listed on the AICS.

Hazardous Substances Information System (HSIS): Components listed by CAS# in Section 3 (Composition and Information on Ingredients) are not listed in the HSIS.

Standard for the Uniform Scheduling of Drugs and Poisons: Not applicable.

CHINESE REGULATIONS:

Chinese Inventory of Existing Chemical Substances Status: Components listed by CAS# in Section 3 (Composition and Information on Ingredients) are on the Chinese Inventory of Existing Chemical Substances (IECSC).

JAPANESE REGULATIONS:

Japanese ENCS Inventory: Components listed by CAS# in Section 3 (Composition and Information on Ingredients) are on the ENCS Inventory or are excepted.

Japanese Ministry of Economy, Trade, and Industry (METI) Status: Components listed by CAS# in Section 3 (Composition and Information on Ingredients) are not listed as Class I Specified Chemical Substances, Class II Specified Chemical Substances, or Designated Chemical Substances by the Japanese METI.
15. REGULATORY INFORMATION (Continued)

JAPANESE REGULATIONS (continued):
Poisonous and Deleterious Substances Control Law: Components listed by CAS# in Section 3 (Composition and Information on Ingredients) are not listed as a Specified Poisonous Substance under the Poisonous and Deleterious Substances Control Law.

KOREAN REGULATIONS:
Korean Existing Chemical Substances Inventory Status: Components are listed on the Korean Existing Chemicals List, as indicated in composition tables in Section 3 (Composition and Information on Ingredients).

NEW ZEALAND REGULATIONS:
New Zealand Inventory of Chemicals (NZIoC): Components listed by CAS# in Section 3 (Composition and Information on Ingredients) are on the NZIoC.

MEXICAN REGULATIONS:
Mexican Workplace Regulations (NOM-018-STPS-2000): This product is not classified as hazardous.

TAIWANESE REGULATIONS:
Taiwan Existing Chemical Substances Inventory Status: Components listed by CAS# in Section 3 (Composition and Information on Ingredients) are listed on the Taiwan Existing Chemicals List.

16. OTHER INFORMATION

ANSI LABELING (Z219.1): CAUTION! MAY CAUSE SERIOUS EYE IRRITATION. MAY CAUSE SKIN AND RESPIRATORY TRACT IRRITATION. MAY DISCOLOR CONTAMINATED SKIN, EYES, HAIR, AND CLOTHES. Use with adequate ventilation. Avoid contact of liquid with skin, eyes, and clothing. Avoid exposure to vapors, mists, or sprays. Wash thoroughly after handling. Wear appropriate hand and eye protection. FIRST-AID: In case of contact, immediately flush skin with plenty of water. Remove contaminated clothing and shoes. If inhaled, remove to fresh air. If swallowed, do not induce vomiting. Get medical attention if irritation develops or persists or if any other adverse effect occurs. IN CASE OF SPILL: Use water fog, dry chemical, or CO₂, or alcohol foam. IN CASE OF FIRE: Use water fog, dry chemical, or CO₂, or alcohol foam.

GLOBAL HARMONIZATION LABELING AND CLASSIFICATION:

Classification: Eye irritation, Category 2A
Hazard Statements: H319: Causes serious eye irritation.
Precautionary Statements:
Response: P305 + P351 + P338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P337 + P313: If eye irritation persists: get medical advice/attention.
Storage: None
Disposal: None
Signal Word: Warning
Hazard Symbols/Pictograms: GHS07

KOREAN ISHA (Notice 2009-68) LABELING AND CLASSIFICATION: Classified in accordance with ISHA Notice 2009-68. Under ISHA, the following differences in classification are applicable. Refer to information given under the Global Harmonization Standard Classification.

Classification: Eye irritation, Category 2
Hazard Statement Codes: H319: Causes serious eye irritation.
Precautionary Statements:
Response: P305 + P351 + P338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P337 + P313: If eye irritation persists: get medical advice/attention.
Storage: None
Disposal: None
Signal Word: Warning
Hazard Symbols/Pictograms: GHS07

NEW ZEALAND HAZARDOUS SUBSTANCES and NEW ORGANISMS ACT (HNSO) CHEMICAL CLASSIFICATION:
The product is classified as follows under the regulation:
Classification:
6.4A: Irritation to the eye.

CLASSIFICATION INFORMATION FOR COMPONENTS:

CLP Regulation (EC) 1272/2008
Carbon Black:
Classification: Carcinogenic Category 2
Hazard Statements: H350i: May cause cancer by inhalation.

Isopropyl Alcohol:
Classification: Flammable Liquid Category 2, Eye Irritant Category 2A, Specific Target Organ Toxicity (Inhalation-Central Nervous System) Single Exposure Category 3

All Remaining Components:
Classification: An official classification for this substance has not been published under CLP 1272/2008 and a self-classification is not applicable.
A large number of abbreviations and acronyms appear on a SDS. Some of these, which are commonly used, include the following:

DEFINITIONS OF TERMS

HAZARDOUS MATERIALS IDENTIFICATION SYSTEM HAZARD RATINGS (continued):

Health Hazard (continued): 3 (Serious Hazard) [continued]. Eye Irritation: Corrosive. Skin Irritation: Corrosive. Material that in itself, or in its packaging, is not inherently stable, but which may decompose, polymerize, or self-react (e.g. dry chloride dioxide, aqueous sodium chlorate solution (40%)/cellulose mixture) and the criteria for Packing Group I are not met.

Physical Hazard:

- Explosives: Substances that are Non-Explosive. Unstable Compressed Gases: No Rating. Pyrophoric: No Rating. Oxidizers: No “0” rating allowed. Unstable Reactives: Substances that will not polymerize, decompose, condense or self-react. (1) Water Reactivity: Materials that change or decompose upon exposure to moisture. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. These materials may react with water, but will not result in a heat release. Explosives: Division 1.5 & 1.6 substances that are very insensitive explosives or that do not have a mass explosion hazard. Compressed Gases: Pressurized and meet OSHA definition but < 514.7 psi absolute at 21.1°C (70°F) for a period of 5 minutes. Air-reactive: Materials that in other than an inert atmosphere, will react with air, moisture or water, and which are not otherwise classed. Air-reactive materials when exposed to air at a temperature of 54.4°C (130°F) or below (e.g. pyrophoric).

PHYSICAL HAZARD:

- Water Reactivity: Materials that do not react with water. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. Explosives: Substances that are Non-Explosive. Unstable Compressed Gases: No Rating. Pyrophoric: No Rating. Oxidizers: No “0” rating allowed. Unstable Reactives: Substances that will not polymerize, decompose, condense or self-react. (1) Water Reactivity: Materials that change or decompose upon exposure to moisture. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. These materials may react with water, but will not result in a heat release. Explosives: Division 1.5 & 1.6 substances that are very insensitive explosives or that do not have a mass explosion hazard. Compressed Gases: Pressurized and meet OSHA definition but < 514.7 psi absolute at 21.1°C (70°F) for a period of 5 minutes. Air-reactive: Materials that in other than an inert atmosphere, will react with air, moisture or water, and which are not otherwise classed. Air-reactive materials when exposed to air at a temperature of 54.4°C (130°F) or below (e.g. pyrophoric).

PHYSICAL HAZARD:

- Water Reactivity: Materials that do not react with water. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. Explosives: Substances that are Non-Explosive. Unstable Compressed Gases: No Rating. Pyrophoric: No Rating. Oxidizers: No “0” rating allowed. Unstable Reactives: Substances that will not polymerize, decompose, condense or self-react. (1) Water Reactivity: Materials that change or decompose upon exposure to moisture. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. These materials may react with water, but will not result in a heat release. Explosives: Division 1.5 & 1.6 substances that are very insensitive explosives or that do not have a mass explosion hazard. Compressed Gases: Pressurized and meet OSHA definition but < 514.7 psi absolute at 21.1°C (70°F) for a period of 5 minutes. Air-reactive: Materials that in other than an inert atmosphere, will react with air, moisture or water, and which are not otherwise classed. Air-reactive materials when exposed to air at a temperature of 54.4°C (130°F) or below (e.g. pyrophoric).

PHYSICAL HAZARD:

- Water Reactivity: Materials that do not react with water. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. Explosives: Substances that are Non-Explosive. Unstable Compressed Gases: No Rating. Pyrophoric: No Rating. Oxidizers: No “0” rating allowed. Unstable Reactives: Substances that will not polymerize, decompose, condense or self-react. (1) Water Reactivity: Materials that change or decompose upon exposure to moisture. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. These materials may react with water, but will not result in a heat release. Explosives: Division 1.5 & 1.6 substances that are very insensitive explosives or that do not have a mass explosion hazard. Compressed Gases: Pressurized and meet OSHA definition but < 514.7 psi absolute at 21.1°C (70°F) for a period of 5 minutes. Air-reactive: Materials that in other than an inert atmosphere, will react with air, moisture or water, and which are not otherwise classed. Air-reactive materials when exposed to air at a temperature of 54.4°C (130°F) or below (e.g. pyrophoric).

PHYSICAL HAZARD:

- Water Reactivity: Materials that do not react with water. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. Explosives: Substances that are Non-Explosive. Unstable Compressed Gases: No Rating. Pyrophoric: No Rating. Oxidizers: No “0” rating allowed. Unstable Reactives: Substances that will not polymerize, decompose, condense or self-react. (1) Water Reactivity: Materials that change or decompose upon exposure to moisture. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. These materials may react with water, but will not result in a heat release. Explosives: Division 1.5 & 1.6 substances that are very insensitive explosives or that do not have a mass explosion hazard. Compressed Gases: Pressurized and meet OSHA definition but < 514.7 psi absolute at 21.1°C (70°F) for a period of 5 minutes. Air-reactive: Materials that in other than an inert atmosphere, will react with air, moisture or water, and which are not otherwise classed. Air-reactive materials when exposed to air at a temperature of 54.4°C (130°F) or below (e.g. pyrophoric).

PHYSICAL HAZARD:

- Water Reactivity: Materials that do not react with water. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. Explosives: Substances that are Non-Explosive. Unstable Compressed Gases: No Rating. Pyrophoric: No Rating. Oxidizers: No “0” rating allowed. Unstable Reactives: Substances that will not polymerize, decompose, condense or self-react. (1) Water Reactivity: Materials that change or decompose upon exposure to moisture. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. These materials may react with water, but will not result in a heat release. Explosives: Division 1.5 & 1.6 substances that are very insensitive explosives or that do not have a mass explosion hazard. Compressed Gases: Pressurized and meet OSHA definition but < 514.7 psi absolute at 21.1°C (70°F) for a period of 5 minutes. Air-reactive: Materials that in other than an inert atmosphere, will react with air, moisture or water, and which are not otherwise classed. Air-reactive materials when exposed to air at a temperature of 54.4°C (130°F) or below (e.g. pyrophoric).

PHYSICAL HAZARD:

- Water Reactivity: Materials that do not react with water. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. Explosives: Substances that are Non-Explosive. Unstable Compressed Gases: No Rating. Pyrophoric: No Rating. Oxidizers: No “0” rating allowed. Unstable Reactives: Substances that will not polymerize, decompose, condense or self-react. (1) Water Reactivity: Materials that change or decompose upon exposure to moisture. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. These materials may react with water, but will not result in a heat release. Explosives: Division 1.5 & 1.6 substances that are very insensitive explosives or that do not have a mass explosion hazard. Compressed Gases: Pressurized and meet OSHA definition but < 514.7 psi absolute at 21.1°C (70°F) for a period of 5 minutes. Air-reactive: Materials that in other than an inert atmosphere, will react with air, moisture or water, and which are not otherwise classed. Air-reactive materials when exposed to air at a temperature of 54.4°C (130°F) or below (e.g. pyrophoric).

PHYSICAL HAZARD:

- Water Reactivity: Materials that do not react with water. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. Explosives: Substances that are Non-Explosive. Unstable Compressed Gases: No Rating. Pyrophoric: No Rating. Oxidizers: No “0” rating allowed. Unstable Reactives: Substances that will not polymerize, decompose, condense or self-react. (1) Water Reactivity: Materials that change or decompose upon exposure to moisture. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. These materials may react with water, but will not result in a heat release. Explosives: Division 1.5 & 1.6 substances that are very insensitive explosives or that do not have a mass explosion hazard. Compressed Gases: Pressurized and meet OSHA definition but < 514.7 psi absolute at 21.1°C (70°F) for a period of 5 minutes. Air-reactive: Materials that in other than an inert atmosphere, will react with air, moisture or water, and which are not otherwise classed. Air-reactive materials when exposed to air at a temperature of 54.4°C (130°F) or below (e.g. pyrophoric).
HAZARDOUS MATERIALS IDENTIFICATION SYSTEM HAZARD RATINGS (continued):

PHYSICAL HAZARD (continued): 3 (Water Reactivity: Materials that may form explosive reactions with water. Organic Peroxides: Materials that are capable of detonation or explosive reaction, but must be handled with extreme caution due to the potential for rapid heat generation and explosion.)

FLAMMABILITY HAZARD (continued): 3 (continued): Liquids having a flash point below 22.8°C (73°F) and having a boiling point at or above 37.8°C (100°F) and those liquids having a flash point at or above 22.8°C (73°F) and below 37.8°C (100°F) and those below 37.8°C (100°F) (i.e. Class IB and II liquids). Group IIA liquids that can form explosive mixtures with air and are readily dispersible in air. Flammable or combustible liquids with a representative diameter less than 420 microns (40 mesh). Materials that burn with extreme difficulty at normal temperature and pressures: Methane, propane, butane, ethane, ethylene, propylene, hydrogen, acetylene, and other similar materials.

INERT MATERIALS: 2 (inert substances that do not react with water which is capable of detonation or explosive reaction, but must be handled with extreme caution due to the potential for rapid heat generation and explosion.)

INSTABILITY HAZARD: 0 (Materials that in themselves are normally stable, even under fire conditions: Materials that have an estimated instantaneous power density (product of heat of reaction and reaction rate) at 250°C (482°F) at or above 0.01 W/ml and below 10 W/ml. 2 Materials that readily undergo violent chemical change at elevated temperatures and pressures: Materials that have an estimated instantaneous power density (product of heat of reaction and reaction rate) at 250°C (482°F) at or above 0.01 W/ml and below 100 W/ml. 3 Materials that are inherently unstable. 4 Materials in which gases are formed that are sensitive to localized thermal or mechanical shock at normal temperatures and pressures.

FLAMMABILITY LIMITS IN AIR: The minimum concentration of a flammable substance in air at which it will react at ambient temperature and pressures: A substance with a lower limit of 1% will be designated by an "L" and a higher limit of 10% will be designated by a "H". The limits are expressed in parts of material per million parts of air or water; the units used in this section are:

- Volume, that will explode or ignite.
- Lethal concentration (solids & liquids) which kills 50% of the exposed animals; LDo.
- Minimum temperature required to cause explosion: a substance with a lower limit of 1% will be designated by an "L" and a higher limit of 10% will be designated by a "H". The limits are expressed in parts of material per million parts of air or water; the units used in this section are:

- Volume, that will explode or ignite.
- Lethal concentration (solids & liquids) which kills 50% of the exposed animals; LDo.
- Minimum temperature required to cause explosion: a substance with a lower limit of 1% will be designated by an "L" and a higher limit of 10% will be designated by a "H". The limits are expressed in parts of material per million parts of air or water; the units used in this section are:

- Volume, that will explode or ignite.
- Lethal concentration (solids & liquids) which kills 50% of the exposed animals; LDo.
- Minimum temperature required to cause explosion: a substance with a lower limit of 1% will be designated by an "L" and a higher limit of 10% will be designated by a "H". The limits are expressed in parts of material per million parts of air or water; the units used in this section are:

- Volume, that will explode or ignite.